NASA TN D-141

S O

J97/57
)76

TECIHNl(I,_‘I\!rl NOTE

EFFECT OF LOCALIZED MASS TRANSFER NEAR THE STAGNATION
REGION OF BLUNT BODIES IN HYPERSONIC FLIGHT
By Paul M. Chung

Ames Research Center
Moffett Field, Calif.

NATIONAL AEIiQNAUTICS AND SPACE ADMINISTRATION

WASHINGTON _ May 1960

{NASA-TN-D-14 1) EFFECT OF LCCALIZED MASS N89-70574
IEANSFER NEAK TEE STAGEATICN EEGICN OF BLUNT
ECDIES IN HYPERSCKIC FIIGHT (KASA) 19 p
Unclas
00702 0197158
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TECHNICAL NOTE D-141

EFFECT OF LOCALIZED MASS TRANSFER NEAR THE STAGNATION
REGION OF BLUNT BODIES IN HYPERSONIC FLIGHT

By Paul M. Chung

SUMMARY

The effect of localized mass transfer on skin friction and heat
transfer 1s studied analytically for the impervious surfaces downstream
of the transpiration-cooled region of hypersonic blunt bodies.

Coefficient of local skin friction and Stanton number are calculated
near the stagnation regions of a circular cylinder and a sphere for the
case of localized mass transfer at the stagnation region.

The numerical results obtalned and an existing result for a flat
plate are compared on the basis of the Blasius dimensionless fluid injec-
tion parameter. The comparison shows that the localized mass transfer
becomes less effective in protecting the downstream impervious surfaces
when a favorable pressure gradient is imposed on the flow and when the
flow 1s varied from two- to three-dimensional.

INTRODUCTION

Mass transfer cooling, whether it is by ablation or injection of
fluid through a porous wall, is likely to be applied in a localized region.
The effect of upstream transpiration on the downstream solid surface was
studied for a flat plate in references 1 through 3.

According to the authors of references 1 and 2, similar analyses
when applied to the stagnation region of blunt bodies have been unsuc-
cessful. The major cause of this appears to be the effect of pressure
gradient in the stagnation region. It was pointed out in reference by
that the usual integral methods of solution of laminar boundary-layer
equations fail in many instances when the effect of streamwise pressure
gradient on the velocity profile becomes pronounced.

Tt was indicated in reference 5, however, that under hypersonic
flight conditions, the direct effect of the pressure gradient on the
velocity profile is very small when the surface of the vehicle is highly
cooled. In the present paper, the hypersonic approximations given in




reference 5 will be used to study the effect of localized mass transfer
at the stagnation region of blunt bodies. Direct application of the flat
plate solutions of reference 2 will be made in the study.

LIST OF SYMBOLS

ai coefficient of 1 1in polynomial velocity profile
0.2
o Pyt
Pete /o
Ce coefficient of local skin friction for hypersonic boundary layer,
Tw
(l/g)peuez
6} coefficient of local skin friction for flat plate given in refer-
ence 2
c — R
o
Pe,oMe,0
cp specific heat at constant pressure
Fi momentum thickness defined by equation (20)
F, momentum thickness defined by equation (23)

f(ng) Blasius function defined by equation (29)

fy Blasius blowing rate defined by equation (32)
H nt
bt e
He ratio of displacement to momentum thickness
h enthalpy defined by equation (5b)
h total enthalpy defined by equation (5a)
h° heat of formation at zero temperature
k thermal conductivity
M molecular weight of mixture
m mass fraction

Pr Prandtl number
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Ay

pressure
heat transfer rate per unit area to the surface
universal gas constant

distance from axis to point on surface of axisymmetric body defined
in figure 1

Ay
Pelleht e
independent varisble defined by equation (6)

local Stanton number,

absolute temperature

independent variable defined by equation (6)

o
ot

x component of velocity

el
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y component of velocity

distance along surface from stagnation point
distance normal to surface
. . . due
velocity gradient along surface at stagnation point, =
o}
thickness of boundary layer

modified boundary-layer thickness defined by equation (19)
t

5t

Blasius variable defined by equation (31)
subtended angle to x

dynamic viscosity

kinematic viscosity

density

shear stress

stream function defined by equations (8) and (9)



Subscripts
c cylinder
e edge of boundary layer
i ith species
o stagnation point
i) flat plate
s sphere
W surface
Ot point corresponding to t = &t
Superscripts

end of the transpiration-cooled region

total differentiation with respect to np

ANATYSTS

The study begins with the following set of equations for the laminar
boundary layer over two-dimensional or axisymmetric bodies (see fig. 1).
The hypersonic boundary layer is assumed to be in chemical equilibrium
and the Lewils number is assumed to be unity. Then,

€
a%;fe + ai;f =0 continuity (1)
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M
where
€ =0 for two-dimensional bodies
e =1 for axisymmetric bodies

The diffusion equation is not necessary here because of the assumption
of chemical equilibrium.

The total enthalpy, ht, includes the chemical energy and is given by

u2
he = ) himj + = (5a)
i
where
T i
hi =f cp,idT + hy° (5b)
(o]

The conservation equations can be transformed to more convenient
forms by defining a new set of independent varisbles s and t as

s =M/ﬂ Co(x)ue(x)r3€(x)ax

(e}

y
= uered/w P dy
Pe 0

(o]

The symbol Cg in equation (6) represents the ratio

pu =< Pete ><
Pe ,ote,0 Pe,ote,0/ \Pelte

and is a function of both x and y. A study of references 6 and 7 shows
that for a ILewis number of 1 an approximate solution to the conservation
equations can be obtained to predict the heat transfer within 10 percent
of the exact solution. This is done by considering pp/pepe to be
independent of y and to be equal to

(;e“e




With this approximation:

Colx) = <—5£%f§—p> c ()

Now, a stream function is defined by

e 0 S (8)
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which satisfy the continuity equation. Then the momentum equation 1is
transformed on the s-t 7plane as

ov 2% _ov Ry _, 3%, 1 dwefre (ovY (10)
3t ot 95 os ote 03 Ve ds Lo A\t

If we define

=a_\l; =_§.‘£
VT VT T %

u/ue and equation (10) becomes
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The last term of the above equation appeared in essentially this form in
the affinely transformed momentum equation in reference 5 where it was
shown that the effect of this term on the solution of the complete equa-
tion is very small for highly cooled hypersonic boundary layers.
Accordingly equation (11) is simplified to

then from equation (8) U

U%E+V%tq=ve’o—%§% (12)

The continuity equation becomes

AU | oV _
St 0 (13)
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The energy equation (3) is similarly transformed to
3 . , OH _ Ye,o 07K ue2<_l S (i
U§g+Vat -.1_3-1:'—.-5—'13—2-+ve’0h't,e 1 r) St Uat (14)

The last term in equation (14) is very small and can be neglected in
accordance with reference 5. The energy equation therefore is simplified
to

U@.}- V_a_}l = V.ez'o_fﬂ_ (]_5)

Os ot Pr dt2

Now it should be noted that the resulting equations (12), (13), and
(15) are in the same form as the incompressible boundary-layer equations
applicable to flow over a flat plate. The boundary conditions are:

-~
when t =0
Uu=0
V=20 for s > s '
V=V, for s =8 P (16)
H=H,«k1
when t = w
U=H=1
J

Exact affine solutions of equations (12), (13), and (15) for the
transpiration-cooled regions s S S are available elsewhere (e.g.,
ref. 8). Following the method of reference 2, the integral method is
used here for the region s > §. The Prandtl number is assumed to be
unity in the solution. The momentum and energy equations and their
boundary conditions are then identical. Therefore, only the solution of
the momentum equation is required. Integration of equation (12) across

the boundary layer yields

2dF;  F; a(8;%) = <§H
at dS + E‘ dS Ve’o a v (17)
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and the modified momentum thickness is given by

1
Fi =f U(1 - U)dn (20)
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Before proceeding further the validity and accuracy of equation (17) which

has been obtained by transforming, simplifying, and integrating the original

momentum equation (2) will be discussed.

TIet us consider a hypersonic boundary layer over a solid surface.
A coefficient of local skin friction can be obtained here from equa-
tion (17) using a fourth degree polynomial velocity profile as °

E£ v 2r€u8J75 (21)
2 Pelle® 1260 [ *
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The more exact integrated form of the original momentum equation (2) is
given in reference L as

d d T
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(22)

where the momentum thickness is defined by

Fp = Jf peue (23)

Equation (22) was solved in reference b by employing a fourth degree
polynomial for the velocity profile. It can be shown that the result of
the analysis of reference U4 yields exactly the same value of Cf/2 as
that given by equation (21) when the appropriate hypersonic approximations
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of reference 5 are made. The solution, (21), gives values of C¢ within
5 percent of those derived in reference 5 when C = 1. Equation (17)
therefore is seen to be quite satisfactory and is a much more convenient
form for the present purpose than equation (22).

Iet us return to the present analysis. A seventh degree polynomial
in 17 is assumed for the velocity profiles along the impervious surface
(s > 8) as

-
U =Zannn (24)
n=1

The coefficients a, are obtained from the boundary conditions given in
(16) and from the compatibility conditions derived from equation (12).
These conditions are:

when t =0, =0 w
Ug=v =20
ﬁ:ﬁ:o
x® ot®

@ |

when t =084, n=1

U=1
W 9% . 2% _
ot o2 otS
Expressions (24) and (25) yield
2104 day _ , 3B%) -
T <6t - - a1 24(35 - 20a;) (26)
The momentum equation (17) gives
1@_?0&_1. = % [64(0.09518 + 0.04371a; - 0.018322,2)] (27)

t
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The above two equations become identical to equations (A29) and (A31),
respectively, of reference 2 when B, u,, C, v , and x 1in equations (A29)
and (A31l) are replaced by 0S¢, 1, 1, Ve,0> and s, respectively.

The initial conditions for equations (26)-and (27) are obtained by
matching the polynomial profile at s = § to the Blasius velocity profile
which is given by the exact solutions of equations (12) and (13) for the
transpiration-cooled region.

The momentum and continuity equations (12) and (13) may be transformed
to the Blasius equation over a flat plate as

£rrr o+ £ =0 (28)
by letting
£(ng) = —tee (29)
/ Ve ,08
= 1 = _u_;_
5 () = & (30)
and
t
Mg = —F/——— (31)
2~/ve’os
The boundary conditions for equation (28) are as follows for the
transpiration-cooled regions:
at ng = 0 )
X
[ PeHeler€ax
f =1y = -2puyVw
€
Peketer N C >
© (32)
fr =0
at T]B =
ft =2 J

The solution of equation (28) may be found in reference 8 for various
values of fy. The solution is the same as the one used for the
transpiration-cooled region of reference 2 except for different definitions
of independent varisbles.

O O F
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The profiles where the transpiration-cooled region meets the solid
region are approximately matched, as in reference 2, by the following
method. First, the friction coefficient determined by the polynomial
profile without transpiration is matched to that given by the Blasius
profile with transpiration. In the present analysis, when the two expres-
sions for Cr/2 are derived and equated, there results

= 28,1
nB,St f"(O)

(33)

Equation (33) is identical in form to equation (A49) in reference 2.
Secondly, the definition of boundary-layer thickness in the Blasius solu-~
tion is taken as that value of ng at which

u = i 1 =
@ -5 £ (np,5,) = 0.9976

as in reference 2. Then equation (33) yields a value of a; at s = 5
which is identical to (in the terminology of ref. 2) the value of a
found for x = X in reference 2. It is now clear that the solution of
the present equations (26) and (27) can be obtained directly from refer-
ence 2. The local skin friction over the solid surface of a blunt body
downstream of the transpiration-cooled region is then given by the simple
relationship, for a given £y,

Ce(s) - Cp(x)

Cf(S )fw=o -C'Tf(x)fw=o

(34)

where the ratio, Ef(x)/ﬁf(x)fw__.o, is for a flat plate and is calculated

in reference 2 for several values of fy. The skin-friction ratio,
Cf(S)/Cf(S)fw=o, can be transformed to the physical plane as

Cf(x)/Cf(x)fw=o by use of equation (6).

The convective heat transfer for a Prandtl number of 1 may be written

St(s)  _ Cr(s)
5t(8 ) ey =0 c.f(s)f_W=O

(35)

This relationship should be valid for engineering purposes even when the
Prandtl number is as low as 0.7.
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DISCUSSION

The ratios, Cf(x)/Cf(X)fw=o and St(x)/St(x)fw=o, are plotted in

figure 2 for a flat plate, a circular cylinder (axis normal to flow), and
a sphere for two blowing rates. In the calculations for the cylinder and
the sphere, the following simple relationships were used for small ©

Ue,c = PeX 1

Ue,s = BsX & (36)
3
Peke = (Pete),

r=x J

The solution forAa sphere depends on the absolute value of 6 as well
as the ratio x/x. The result for the sphere shown in figure 2 is for
6 = 10°.

The results shown in the figure are for values of the dimensionless
blowing parameter f, equal to -0.25 and -1. Eguations (32) and (36)
yield the following relationships between £y and the actual blowing
rate, PyVye

For a flat plate,

1 Cp(pepe)pue e
p'wVw - 2 / % 2 fw’ (37)
For a cylinder,
1
PwVw = - ijécc(pepe)oﬁc Ty (38)
For a sphere,
_ 1
PwVw = - §”J£Cs(peue)05s Tw (39)
Consider, as a basis of comparison, the conditions for which
Cp(pete Jpue
pi\re pEe,D
J[ - "'chc(PeHe)oﬁc = JiCs(pete )oBs (40)

Figure 2 shows that for a given value of £, the protection afforded to
the body downstream of the transpiration-cooled region becomes less

3
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effective when a favorable pressure gradient is imposed on the flow and
when the flow is varied from two- to three-dimensional. The figure also
shows that the protection from high heat-transfer rate given to the
impervious surface downstream of the transpiration-cooled regions is very
small near the stagnation region of a hypersonic vehicle.

It may be interesting to note that the problem of localized mass
transfer cooling of rocket nozzle walls can be handled by essentially
the same method as given here. This is because the density ratio, pe/pw,
is very small along the walls of the nozzle so that the basiec simplifi-
cation of the hypersonic boundary layer can be made in that case also.

The present study, strictly speaking, has been concerned with
localized air injection only. In the case of a localized mass transfer
of a fluid other than air, however, the relative results between the three
bodies (flat plate, cylinder, and sphere) should still be essentially the
same as those presented here provided the transferred fluid properties do
not differ greatly from those of air.

CONCLUDING REMARKS

The effect of localized mass transfer on skin friction and heat
transfer was analyzed for the impervious surfaces downstream of the
transpiration-coocled region of hypersonic blunt bodies.

Iocal coefficients of skin friction and Stanton numbers were
calculated near the stagnation regions of a circular cylinder and a
sphere for the case of localized mass transfer at the stagnation region.

The numerical results obtained here and the flat plate result of
reference 2 were compared on the basis of the Blasius dimensionless fluid
injection parameter. The comparisons showed that the localized mass
transfer becomes less effective in protecting the downstream impervious
surfaces when a favorable pressure gradient is imposed on the flow and
when the flow is varied from two- to three-dimensional.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 19, 1960
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Figure 2.- Effect of localized mass transfer.
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